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Abstract

We describe a methodology for control of vertically pro-
filing floats that uses an imperfect predictive model of
ocean currents. In this approach, the floats have control
only over their depth. We combine this control authority
with an imperfect model of ocean currents to force the
floats to maintain position. First, we study the impact
of model accuracy on this ability to station keep (e.g.
maintain X-Y position) using simulated planning and
nature models. In this study, we examine the impact of
batch versus continuous planning. In batch planning the
float depth plan is derived for an extended period of time
and then executed open loop. In continuous planning the
depth plan is updated with the actual position and the
remainder of the plan re-planned based on the new in-
formation. In these simulation results, we show that (a)
active control can significantly improve station keeping
with even an imperfect predictive model and (b) con-
tinuous planning can mitigate the impact of model in-
accuracy. Second, we study the effect of using heuristic
path completion estimators in search. In general, using
a more conservative estimator increases search quality
but commensurately increases the amount of search and
therefore computation time. Third, we discuss results
from an April 2015 deployment int he Pacific Ocean and
compare model accuracy and float control performance.

Introduction

The state of the ocean affects the environment and cli-
mate, thus affecting food production, defense, and leisure.
As such, ocean dynamics is an important area of study that
currently uses a variety of different techniques to measure
ocean conditions. One technique involves the use of robotic
marine vehicles such as floats, gliders, and autonomous un-
derwater vehicles (AUV) to measure conditions such as cur-
rents, salinity, and temperature in a dynamic way. Another
technique uses moored buoys, which allow scientists to col-
lect data at a fixed location over time. However, a couple of
drawbacks to physically mooring a buoy are that it involves
significant financial investment and the location cannot be
changed after installation.

As an alternative, a virtual mooring is proposed in which
a dynamically controlled vehicle uses a control policy in or-
der to maintain its position. Specifically, one proposal is to
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Asset Control Speed Longevity Cost

Floater None None Weeks $100’s

Vertical

Profiling  Vertical ~0.1 m/s Years $10K’s

Float

Seaglider Horizontal ~0.5m/s Months $50°s -

$100’sK

AUV Horizontal ~2.5m/s 1 Day $100K

& Vertical - Weeks - $M

Table 1: Characteristics and costs for different families of
marine vehicles.

deploy a vertical profiling float to the location of desired data
collection and to use predictive ocean models to plan a con-
trol sequence for changing depths that best keeps the float
near the same latitudinal and longitudinal location using the
ocean currents. A vertical profiling float can change depths,
but does not have any lateral propulsive power, meaning that
the float is carried solely by the ocean current in the latitu-
dinal and longitudinal directions. By purposefully changing
depths it is possible to harness the motion of the ocean to di-
rect the float. This method has multiple benefits over using
a physical mooring. First, the float could be retrieved and
redeployed when desired. Second, there is more flexibility
since the float could be programmed to track a moving tar-
get or to drift to facilitate deployment or retrieval. Third, the
deployment would be less expensive than building a physi-
cal anchor location.

Although using an AUV would provide better control to
remain at a fixed location, more capable vehicles are more
expensive. Table 1 shows approximate costs for families of
marine vehicles (Woods Hole Oceanographic Institution ;
Sanford et al. 2005; Eriksen et al. 2001; YSI Systems ;
OceanServer Technology, Inc. ; Bluefin Robotics Corpora-
tion ; Kongsberg Mairtime AS ).

Scientists studying the characteristics of the ocean would
ideally like to be able to collect data at all depths and all
times at a particular location. Obviously, a single float can-
not be at all depths at all times and therefore must profile
to collect data across the depths. Using a predictive ocean
model it is possible to generate a control sequence for the
float to change depths in a way that keeps it as close to the
desired location of data collection as possible.



To analyze the benefit of planning a path for a float to act
as a virtual mooring, compared to allowing the float to con-
tinuously profile, an Electromagnetic Autonomous Profiling
Explorer (EM-APEX) (Sanford et al. 2005) vertical profil-
ing float is modeled. During a deployment, each time that
the EM-APEX float surfaces, it transmits its data and can be
commanded to profile to a different depth. This allows for
two possible control strategies. First, in batch planning, the
float plans once for the deployment based on the best model
of the ocean currents. In continuous planning, at each float
surfacing, we re-plan the control sequence of the float dur-
ing each surfacing. This enables the planning to incorporate:
(1) the most up to date information about the location of
the float and (2) the most up to date ocean current model. !
We believe that using this opportunity to re-plan the control
sequence using the best information can improve the path
when there is information gain in the model.

Since directing the float relies solely on the ocean cur-
rents, success is based heavily on the planning process,
and thus on the ocean model used for planning. Modeling
ocean currents is a tremendously challenging problem - as
a chaotic system it is not feasible to model the ocean per-
fectly and producing even modestly accurate predictions is
quite challenging. As we investigate the use of predictive
ocean current models to plan underwater vehicle paths, pre-
dictive accuracy can dramatically affect the utility of our ap-
proach. Therefore studying the impact of model accuracy on
path planning is of great import. Additionally, methods of
measuring predictive model accuracy and correlating these
to planning utility is of great interest.

To study this relationship between model accuracy and
planning utility, we use the Regional Ocean Modeling Sys-
tem (ROMS) (Chao et al. 2009; Li et al. 2006; Farrara et al.
2015). Specifically we artificially create models with vary-
ing degrees of fidelity. Because it is very expensive to per-
form a physical deployment in the ocean, we mimic a de-
ployment. In a deployment we plan in a model and we ex-
ecute in the physical world. In ROMS, we create one or
more planning models of varying fidelity to a nature model.
We then construct plans in a planning model and execute
in the nature model. The planning models were five other
ROMS models with decreasing fidelity. In order to eval-
uate the models, we use the models for path planning of
an Electromagnetic Autonomous Profiling Explorer (EM-
APEX) (Sanford et al. 2005) vertical profiling float attempt-
ing to act as a virtual mooring.

The paths were planned in all of the models and com-
pared to the execution in the nature model. The paths were
also re-planned using continuous planning during execution
using each of the models to compare to the results with-
out re-planning. We show that using current model to plan a
path for a vertical profiling float to act as a virtual mooring
can improve its station keeping compared to a naive con-
trol strategy and that re-planning the path during execution

"While in our deployment scenarios the model does not change
significantly on the timescale of our plan execution so that major-
ity of the gain is from (1), other operational scenarios might exist
where (2) may provide significant value

is an effective technique. Furthermore, this paper aims to
show how the information in a model affects the benefit of
planning a path as well as the efficacy of re-planning during
execution. These ideas have also previously been explored
in (Troesch et al. 2016).

The remainder of this paper is organized as follows. First,
we describe the ROMS modeling framework that we use as
an imperfect predictive model of ocean currents. Second, we
describe the batch and continuous float planning algorithms.
Third, we describe our results in simulation - highlighting
both the effect of model accuracy and heuristic path com-
pletion estimation on algorithm performance. Fourth, we de-
scribe results from an April 2015 field deployment off the
coast of California. Fifth, we describe related and future
work, and conclusions.

Ocean Models

A number of ocean models have been developed including
the Harvard Ocean Prediction System (HOPS) (Robinson
1999), the Princeton Ocean Model (POM) (Mellor 2004),
the Hybrid Coordinate Ocean Model (HY COM) (Chassignet
et al. 2007), and ROMS (Chao et al. 2009). As described
in the Introduction, for our experiments we use the ROMS
model. However, our techniques naturally extend to any cell-
based, predictive model with information about ocean cur-
rents over multiple depths and an extended period of time,
and thus any of these models could be used for the path plan-
ning. Indeed, when multiple modes are available it is also
possible to use them in as an ensemble to further enhance
results (Wang et al. 2013).

ROMS is a discrete, cell-based, predictive model of the
ocean. We used the California coast configuration near the
Monterey Bay, which is a grid of 3 km by 3 km in the lat-
itudinal and longitudinal directions, 1 hour in the time di-
mension up to 72 hours long, and fourteen depths from 0 m
to 1000 m in non-uniform intervals. The currents in the grid
vary over space and time. At deeper depths, the currents tend
to be slow and uniform, conversely, the surface currents are
faster and more variable.

As previously stated, it is not feasible to perform an ocean
deployment of the planned paths for this experiment, so an
approximation using a ROMS model for the ocean is used
instead. This model is the best possible representation from
ROMS and is referred to as the nature model. Five different
planning models were used for this experiment. The differ-
ence between the models is the number of days advanced
prediction that is used in generating the model. Fewer days
of advanced prediction means a higher fidelity model and
thus means that the model is closer to the nature model. We
used 2, 4, 6, 8, and 10 days of advanced prediction for the
planning models. A summary of the inputs for the ROMS
models is shown in Table 2.

To show how the model information decreases with more
advanced prediction of the model, the correlation coeffi-
cient of the currents between the nature model and each
of the planning models was calculated. All of the veloci-
ties in a 41 grid by 41 grid subsection of the ROMS model
across all depths and times were used for the calculation. In



Planning Nature
Models Model

Archiving, Validation and X X
Interpretation of Satellite

Oceanographic (AVISO)

sea surface height data

Advanced Very High Resolution X X

Radiometer (AVHRR) sea

surface temperatures

Moderate Resolution Infrared X X
Spectroradiometer (MODIS)

sea surface temperatures

GOES satellite sea surface X X
temperatures

High Frequency (HF) X
radar surface current data

Monterey Bay Aquarium X X

Research Institute (MBARI)

M1 mooring vertical profiles

of temperature and salinity

Ship sea surface temperatures X X
Number of days advanced 2,4,6,8,10 1
prediction

Table 2: ROMS inputs for the planning and nature models.
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Figure 1: The correlation coefficients of the zonal and merid-
ional currents between the different planning models and the
nature model over a 41 by 41 3km x 3km cell subsection of
the model averaged over all depths and times.

other words, Z,,4ture 18 @ vector of the zonal (west-east) cur-
rents in the selected subregion of the nature ROMS model
at all depths and times. The vector M,, 44, contains the
corresponding meridional (north-south) currents. Similarly,
Zplan, and M., contain the zonal and meridional cur-
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Figure 2: The root mean square error of the zonal and merid-
ional currents between the different planning models and the
nature model over a grid that encompasses the entire search
space over all locations at all depths and times.

Days Advanced Prediction RMS Error

2 0.00855
4 0.05665
6 0.08555
8 0.11445
10 0.13735

Table 3: Root mean square error used for each model with
the specified number of days advanced prediction.

rents of the same data in the planning model using = days of
advanced prediction, respectively. Using these vectors, the
zonal correlation coefficients, pz,, and the meridional cor-
relation coefficients, pys,, could be calculated with the fol-
lowing equations

_ COV(Zplanzu Znature)
O.Zplanz O'Znatuw“e
COV(Z\4[)langc ) Mnaturc)

O Mplangy O Mnature

PZ,

PM, =

where Cov is the covariance functionand oz, 02z, ...
OMpan,»and o are the standard deviations of the ref-
erenced vector.

Figure 1 summarizes the values of the correlation coef-
ficients and shows how the information in the model be-
comes less correlated to the nature model as the number of
advanced prediction days increases. In fact, the correlation
coefficient for the zonal currents using 8 and 10 days of ad-
vanced prediction has a negative value, indicating that the

nature
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Figure 3: The currents at a surface point over 72 hours in all
of the planning models and the nature model.

currents are inversely correlated to the currents in the na-
ture model, which causes the value of planning a path to
decrease.

Just as the correlation coefficient decreases with the in-
crease in number of advanced prediction days, the root mean
square (RMS) error increases. Figure 2 shows the RMS er-
ror between each planning model and the nature model using
the currents over the search space that encompasses all of the
goal locations using all depths and times. The average RMS
error between the zonal and meridional currents for each of
the planning models will be used in the rest of this paper as
a measure of the fidelity of the model, which in turn could
be used as a comparison and reference point in physical de-
ployments to analyze the fidelity of the model being used.
The values of RMS error used for each model are shown in
Table 3.

Another way to visualize how the currents vary across the
different models is by looking at the currents at one loca-
tion over time across all models. Figure 3 shows the zonal
and meridional currents for the same location in all models
over time. The currents of the planning model with 2 days of
prediction are very close to the nature model, but the other
planning models diverge.

Furthermore, Fig. 4 demonstrates how the exact same
control sequence executed over 24 hours in the different
models results in very different path positions.

From Fig. 1, Fig. 2, Fig. 3, and Fig. 4 it is clear that there
is different value in the information provided by the differ-
ent planning models. Specifically that with further advanced
prediction there is a decrease in the predictive accuracy of
the model as indicated by the decrease in correlation coef-
ficient and increase in RMS error. Furthermore, that these

varying information models will predict significantly vary-
ing paths and consequently planing in the different models
can produce significantly different paths.

Data LDEO-Columbia, NSF, NOAA
Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Google earth

Figure 4: The same executed control sequence in all of the
planning models and the nature model starting at the same
location over 24 hours. The number 0 labels the path for the
nature model and the other numbers indicate the number of
planning days in the model used for that path.

Batch Planning

The path planner for this experiment generates a control se-
quence for a vertical profiling float to act as a virtual moor-
ing. As described in the introduction, a vertical profiling
float can change depths both to gather data and to make use
of the currents to stay near a desired location. The float can
be programmed to move between the surface and the pro-
filing depth, to remain at the surface, or to remain at the
profiling depth. Stopping and staying at a depth is restricted
to the surface and profiling depth in order to best mimic the
behavior of the EM-APEX floats. Depending on the needs
of the scientist, it may be more important to stay at a fixed
location or to gather more data by profiling. In this way a
trade-off can be made between staying at the desired loca-
tion and performing more profiles.

Even though the problem space is continuous, to make
the search tractable, the control sequence of the float is de-
termined in a discrete manner. At each decision point, the
float can remain at the depth that it is at, which must be



the surface or the profiling depth, or it can move between
the surface and the profiling depth. If the float remains at a
depth, the duration is equivalent to the time it takes to move
between the depths. To mimic the behavior of a deployed
EM-APEX float, each time that the float returns to the sur-
face from the profiling depth, it must remain at the surface
to upload the collected data. The duration of the upload is 35
minutes. If the float decides to remain at the surface, it must
once again upload the collected data for 35 minutes after the
duration of remaining at the surface.

The value of the currents used for determining the motion
of the float is based on the position of the float as well as the
time. Every approximately 42 seconds (the amount of time
that it takes the float to vertically move half of the smallest
depth step), the position is updated and the current informa-
tion is interpolated among the eight closest grid points. This
current is used to determine the motion of the float until the
next interpolation step or the allotted time step for the node
has been reached.

The algorithm that is used to perform the search is an A*
algorithm. The objective function that is used to score the
paths was designed to make a trade-off between remaining
close to a desired location and performing more profiles, de-
pending on the desires of the user. The equation is

g(n) = Z Z(wTATd + wDADd)
n d

where n are the nodes in the path, d are the possible depth
choices (in this case, the surface or the profiling depth), wr
and wp are weighting terms, ATy is the time in seconds
since the float was at depth d, and Ap is the distance in
kilometers that the float was from the goal location when
it was last at depth d. In other words, each time a node is
added to the path, the most recent node at the surface and the
profiling depth is used to calculate (wr ATy +wpAD,4) and
this sum is added to the score. Since AT, measures the time
since the float was at the other depth, it is a good metric for
determining the time since the last profile was performed.
Therefore, a higher wr to wp ratio favors less time between
profiles and thus favors more profiles. Similarly, a lower wp
to wp ratio favors control sequences that keep the float as
close as possible to the desired location.

The heuristic function used in the A* algorithm simply
assumes that the score will increase at the same rate for the
remainder of the path. Therefore, the equation is

h(n) = <g(Tn)> (mission duration — T')
where T is the time since the beginning of the mission when
the float is at node n.

The equation used by the A* algorithm is thus

f(n) = g(n) +wxh(n)

where w is a weighting given to the heuristic function.

A path is considered complete once its duration reaches
that of the desired mission length.

The execution of the algorithm is summarized in the fol-
lowing pseudocode for Algorithm 1.

Algorithm 1 Batch Planning A* Algorithm

1: function BATCHPLANNER(startPath)
2: (*Note: Model = Planning Model)

3: Q + startPath
4: while () not empty do
5 cur Path < lowest f score path in @)
6 if cur Path needs to upload then
7: newPath0 < curPath + node at surface
8: else
9 newPathl < curPath + node at surface
10: newPath2 < curPath + node at profiling
depth
11: end if
12: if any newPath duration > mission duration
then
13: return curPath
14: end if
15: Q.push all new Paths

16: end while
17: end function

Continuous Planning

During every data upload when the float resurfaces, there is
an opportunity to re-plan the path of the float based on the
best information of its location. Each time the float performs
an upload, the location at the true position of the path so far
in the execution can be used in Algorithm 1 to plan the rest of
the path using the planning model. The next part of the con-
trol sequence is executed according to the re-planned path.
The process of re-planning is repeated each time that the
float re-surfaces until the duration of the mission has been
completed. The control sequence is always executed in the
nature model and planned in the planning model. A sum-
mary of the re-planning algorithm is shown in Algorithm 2.

Algorithm 2 Continuous Planning Algorithm

1: function CONTINUOUSPLANNER(startNode)
2: (*Note: Model = Nature Model)
3: path <+ startNode

4: controlSeq + BATCHPLANNER(path)
5 while controlSeq duration > path duration do
6: while path does not need to upload do
7: nextNode < controlSequence.next
8: depth < depth of nextNode
9: path < path + node at depth
10: end while
11: controlSeq < BATCHPLANNER(path)

12: end while
13: return path
14: end function

Experimental Procedure

The experiment was performed over 100 goal locations in a
10 by 10 grid, which are shown in Fig. 5. At each location,
the five different planning models were used to plan a con-
trol sequence using Algorithm 1, which were then executed



in the nature model. Each of these control sequences were
then also re-planned with continuous planning using Algo-
rithm 2. This process was repeated over all of the locations
using 3 different trade-offs in the objective function, specifi-
cally a wr to wp ratio of 1.6, 4.8, and 8.0 were used, as well
as 6 different weights for the heuristic function from 0 to 1
in steps of 0.2.
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Figure 5: The 100 starting and goal locations used for the
experiment. The latitudes and longitudes labeled indicate the
boundaries of the grid.

The start location of the float was always set to be the
same as the goal location. The profiling depth was 500 m
and the vertical speed of the float was 0.12 m/s, resulting
in a step time of approximately 69 minutes. As previously
stated, the time required for the data upload was 35 minutes.
The total duration of the mission was 24 hours. Given these
inputs, the maximum number of profiles that can be achieved
by continuously profiling is 8.

In order to evaluate the results of the planned paths, base-
lines were developed that evenly space the profiles, from 0
to the maximum of 8 within the mission duration. In order to
attempt to prevent bias in the baselines, three different ways
of evenly spacing the profiles were used. The first, referred
to as the surface baseline, evenly spaces the profiles by re-
maining at the surface between profiles that consist of going
to the profiling depth and resurfacing immediately. The sec-
ond baseline, referred to as the even baseline, evenly spaces
the profiles by remaining at the surface and at the bottom
of the profiles at even intervals. The final baseline, referred
to as the deep baseline, remains at the profiling depth dur-
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Figure 6: The control sequences for 3 profiles using the sur-
face, even, and deep baselines.

ing each profile and only surfaces in between profiles for the
amount of time required to upload the data. As an example,
the depths of the different baseline paths for 3 profiles is
shown in Fig. 6.

Evaluation of the Heuristic

In order to evaluate the heuristic function and the effect of
the chosen weight, an analysis was done on all of the paths in
the planning models. Since the scores are heavily dependent
on the wr to wp ratio in the objective function, the anal-
ysis was split among the three executed ratios. The average
score and number of node expansions to find a complete path
across all locations and planning models was found for each
wr to wp ratio, which can be seen in Fig. 7 and Fig. 8.

As more weight is given to the heuristic function, the
strength of the path decreases, which can be seen by the in-
creasing scores in Fig. 7. However, at the same time, the
number of nodes expanded decreases, which can be seen in
Fig. 8, meaning that the time to find a complete path is im-
proved.

Empirical Evaluation in Simulation

Using a heuristic weight of 0 in order to ensure using the
best planned path, for each wr to wp ratio, each ROMS
model, and each location, the executed path in the nature
model was found for both batch planning and continuous
planning. As an example to show how the control sequence
and the score changes from batch planning to continuous
planning, Fig. 9 shows the depth and score over time using
6 days of advanced planning and a wr to wp ratio of 4.8 at
location (35.67° lat, -123.73° lon).

The average scores across all of the locations for each wr
to wp ratio and each ROMS model were then calculated for
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both batch planning and continuous planning, separately. In
order to give a fair comparison to the baselines, the aver-
age number of profiles for each wr to wp ratio and ROMS
model combination was found from both batch planning and
continuous planning. This number of profiles was then used

for the baselines with those same inputs. Since the average
number of profiles for each wr to wp ratio was not the same
for each ROMS model, the baseline scores are not constant
across a single ratio. Comparing the baselines to the differ-
ent planning methods revealed that the surface baseline per-
formed too poorly (with scores over 100,000) to be repre-
sented on the same scale as the other results, therefore the
surface baselines are not presented on the graphs showing
the results. The comparison of the scores using the different
planning models can be seen in Fig. 10 for the wr to wp
ratio of 1.6, in Fig. 11 for the wy to wp ratio of 4.8, and in
Fig. 12 for the wp to wp ratio of 8.0.
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Figure 9: Batch and continuous planning using 6 days of
advanced planning and a wr to wp ratio of 4.8 at location
(35.67° lat, -123.73° lon).

From these figures, it is clear that on average planning a
control sequence using any of the models performs better
than simply using evenly spaced out profiles. Furthermore,
they all show that the benefits of planning are increased
when the planning model has better knowledge of the cur-
rents in the nature model. As the RMS error in the planning
models increases, the benefits of planning a control sequence
over the baseline decreases.

When considering continuous planning, the benefit is also
related to the amount of knowledge in the planning model.
Obviously, when planning using the nature model, there is
no increase in benefit from continuous planning, since the
position was already correctly known during the planning
process and thus the continuous plan and the batch plan are
identical and there is no added benefit to continuous plan-
ning. However, as the planning model and the nature model
diverge, the updated information at each surfacing provides
a benefit to the planner.

Looking at Fig. 13, the planning model with just a value
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the next section are also shown.
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Figure 11: The average batch and continuous planning
scores when the wr to wp ratio was 4.8 using each planning
model compared to the average baseline scores of the same
average number of profiles. The RMS errors for the zonal
and meridional currents for two deployed floats discussed in
the next section are also shown.
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Figure 12: The average batch and continuous planning
scores when the wr to wp ratio was 8.0 using each planning
model compared to the average baseline scores of the same
average number of profiles. The RMS errors for the zonal
and meridional currents for two deployed floats discussed in
the next section are also shown.
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Figure 13: The average batch and continuous planning
scores when the wy to wp ratio was 8.0 using each planning
model compared to the average baseline scores of the same
average number of profiles. The RMS errors for the zonal
and meridional currents for two deployed floats discussed in
the next section are also shown.



of 0.0085 RMS error is very similar to the nature model,
therefore although there is a benefit to continuous planning,
the added benefit is not significant since the executed path
would not have strayed far from the planned path. Looking at
the next three higher values of RMS error, continuous plan-
ning has a consistent advantage over batch planning. With
the models with the highest values of RMS error, the ben-
efit of continuous planning decreases. This could be due to
the fact that starting at such a large value of RMS error, the
model has such poor information gain that even though the
location is updated at every surfacing, the model is not good
enough to make a significantly better plan.

Empirical Results in Deployment

A prior version of this software was deployed to con-
trol EM-APEX floats during an April 2015 deployment
in support of an AirSWOT (Jet Propulsion Laboratory a;
b) field experiment in the coast off of Monterey Bay, Califor-
nia. In this field experiment, the goal was to keep EM-APEX
floats near features of interest identified manually by scien-
tists. The overall AirSWOT deployment goals are represen-
tative of the intended scientific use case for these planning
tools.

The overall AirSWOT deployment was to test out an Air-
borne science instrument by providing corroborative data
over interesting science features using in-situ instrumenta-
tion (floats, ships) and remote sensing data (from overflying
spacecraft). The AirSWOT instruments were scheduled to
fly in a coverage pattern over specific areas chosen to over-
lap satellite overflights.

Three EM-APEX floats were to be deployed to be near
satellite overflights and airborne overflights. The float plan-
ning tool was used to evaluate potential deployment loca-
tions by predicting the projected drift path of the floats.

Figure 14 shows the variability of the expected float drift
based on the deployment location. The blue paddle indicates
the start location and the green path shows where the float
was projected to drift over time.

Sites for each of the three float deployments were
screened for projected stability and hand selected by the ex-
periment team.

Additionally, two of the three EM-APEX floats were al-
lowed to be controlled dynamically from shore by an earlier
version of the float planning software. This prior float plan-
ning software received the satellite phone updated location
each time the target float surfaced. Because of connectiv-
ity issues, the float planning software could not receive this
data rapidly enough to generate a new plan for transmission
to the float during this surface cycle as the float was only on
the surface approximately 30 minutes each cycle. Instead the
planner could only assert a plan with a 1 surface cycle lag.
Therefore the plan communicated to the float to be executed
after surface cycle n was only based on the actual position
from cycle n — 1 plus the projected drift from cycle n — 1 to
cycle n.

The EM-APEX float tracks planned and executed are
shown for floats 6665 and 6667 in Fig. 15. The yellow point
indicates the start location of the float. The actual location of

i Data LDEO-Columbia, NSF, NOAA
Data MBARI
Data 510, NOAA, U.5. Navy, NGA'GEBCO)
Image Landsat

Figure 14: Expected float drift based on starting location.
The blue paddle indicates the starting location and the green
paths shows the drift.

the float at each surfacing is shown in blue with the arrows
indicating the direction. The red points show where, at each
step of re-planning, the float was predicted to travel. Since
the re-planning was performed two cycles ahead, two surfac-
ing locations are displayed. As shown, the expected control
for neither of the floats performed very well.

This poor performance is not surprising as the current ve-
locities in the ROMS model in the area near both floats was
not very accurate, as can be seen in Fig. 16 and Fig. 17. Be-
cause EM-APEX is designed to get velocity data, it provides
a good opportunity to compare collected data to the ROMS
model. The plots show the zonal and meridional currents of
the interpolated point in the ROMS model at each location
where velocity data was collected by the float. In fact, when
comparing these values to the values used in the simulated
experiment in Table 3, the RMS errors experienced in the
deployment are in the range of the worst models. The RMS
errors for the meridional current for both floats were simi-
lar to the worst model, the RMS error for the zonal current
for float 6667 was similar to the second to worst model, and
the RMS error for the zonal current of float 6665 was al-
most twice as much as the worst model. This can be seen by
the lines indicating the RMS errors of the currents for the
deployed floats compared to the simulated models in Fig.
10, Fig. 11, Fig. 12, and Fig. 13. Starting in this range the
benefits of continuous planning started to decrease and even
batch planning scores started to approach those of the deep
baseline control sequence.

The poor correlation between the ROMS and the float col-
lected velocities is most likely due to the front that was com-
ing in during the deployment that even caused the deploy-
ment to be cut short.
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Figure 15: The deployed path and predicted path at each re-
planned step in the deployed path for floats 6665 and 6667.
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Figure 16: Zonal and Meridional currents found along the
path for float 6665 in the ROMS model and actually experi-
enced in the deployment.
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Figure 17: Zonal and Meridional currents found along the
path for float 6667 in the ROMS model and actually experi-
enced in the deployment.

Table 4 summarizes the RMS errors and correlation coef-
ficients from the data presented in Fig. 16 and Fig. 17.

6665 RMS Corr Min Vel Max Vel
Error Coef (m/s) (m/s)
Zonal 0.24 -0.28 -0.46 0.38
Meridional ~ 0.13 0.42 -0.39 0.39
6667 RMS Corr Min Vel Max Vel
Error Coef (m/s) (m/s)
Zonal 0.12 0.33 -0.23 0.53
Meridional ~ 0.13 0.05 -0.42 0.29

Table 4: Root mean square error and correlation coefficient
for the deployed velocities collected by the EM-APEX floats
compared to the ROMS velocities. The minimum and max-
imum velocities collected by the floats is also shown.

The results from the April 2015 deployment reinforce the
thesis of this paper. In cases where the current model pro-
vides significant information, the model information can be
used improve to float control. In cases where the model pro-
vides no or bad information, performance will be poor and
even in some cases worse than open loop algorithms such as
constant profiling.

Related Work

Path planning for underwater vehicles has been widely stud-
ied; however, most of this work focuses on marine vehicles
with greater control such as Sea gliders and Autonomous
Underwater Vehicles (AUVs). A notable exception is (Dahl
et al. 2011) which examined the problem of optimizing cov-
erage across the oceans for a large number of floats, but only



considered a constant depth and a greedy algorithm. Much
more research has been done on glider planning, where there
is some control for choosing a direction of motion, but it is
less than the current velocity. (Thompson et al. 2010) also
uses the ROMS model, but calculates reachability envelopes
using wavefront propagation for glider path planning. The
work in (Eriksen et al. 2001) describes Seaglider, a glider
that is manually controlled from the shore, and is some-
times controlled to maintain position. No ocean model simi-
lar to ROMS was used. (Alvarez, Garau, and Caiti 2007) also
does not use an ocean model, but instead uses synthetic data
with general algorithms to control a set of floats and glid-
ers. Like the work in this paper, (Rao and Williams 2009)
uses an A* graph search algorithm; however, that work as-
sumes that currents change slowly with time and compute
the path across many nodes in a single time step, whereas
we have many time steps within a single cell. Instead of try-
ing to remain near a specific location, (Pereira et al. 2013)
focuses on gliders that are attempting to avoid surfacing in
dangerous areas, such as shipping lanes. (Grasso et al. 2010)
focuses on the prediction of the glider location, analyzes the
accuracy of the predictive model, and uses a physics based
control model. Using an asset with more control, (Cashmore
et al. 2014) explores the problem of autonomously maneu-
vering near a site for inspection using an AUV with proba-
bilistic modeling for uncertainty. Autonomous marine vehi-
cles have even been proposed to explore Titan, a moon in the
Saturnian system (Pedersen et al. 2015; ESA/NASA 2009;
Stofan et al. 2009). (Leonard et al. 2010) present a controls-
based methods to guide a set of gliders along coordinated
paths. Their approach does not use a model of currents, but
does adaptively guides assets back on to paths and desired
spacing them along racetracks if the vehicles are perturbed
by currents. Therefore this approach would counter-act cur-
rents but does not use a projective forward model as our ap-
proach does.

Continuous planning has become more prevalent in recent
years and the evolution of this planning technique, with re-
spect to multiple assets, is clearly described in (Durfee et
al. 1999). (Myers 1999) describes a Continuous Planning
and Execution Framework (CPEF), which integrates plan-
ning and execution through plan generation, monitoring, ex-
ecution, and repair. Using an iterative repair process, as well
as user interaction, CPEF is able to plan in unpredictable
and dynamic environments, which is shown through tests
in a simulation of an air-campaign for dominance. (Chien
et al. 2000) presents Continuous Activity Scheduling Plan-
ning Execution and Replanning (CASPER), which also uses
iterative repair as part of continuous planning, specifically
for autonomous spacecraft control. (Branch et al. 2016) uses
continuous planning to control AUVs, Seagliders, and Wave
Gliders, also using different fidelity ROMS models, to fol-
low short distance patterns.

Future Work

There are many different extensions that are possible from
this work. A different objective function that guides the float
along a line or a moving point could be developed. Allowing
the float to move to any depth at any time, instead of requir-

ing full profiles to the same depth could be tested. Deploy-
ment and retrieval cost could be included in the objective.
Different assets could be included, such as a glider or AUV,
to give more flexibility in the control. Multiple assets of dif-
ferent types could be controlled simultaneously with differ-
ent objectives and goal locations. New methods for under-
standing the information gain in the different models could
be created as well as using the information about the pre-
dictive accuracy in the model to change how the planning is
performed. For example, if it is known that the model per-
forms poorly after a particular time, that information could
be used to adjust the planning algorithm.

Conclusions

When performing predictive path planning for underwater
vehicles, the model used to represent the ocean always has
some limitations in terms of predictive accuracy. This ex-
periment has shown that the amount of knowledge in the
planning model used to generate the control sequence for a
vertical profiling float attempting to perform virtual moor-
ing affects the benefits of performing planning over simply
evenly spacing the profiles of the float. Specifically, as the
predictive accuracy of the planning model decreases, repre-
sented by the RMS error of the planning model to the nature
model, the benefits of planning also decrease.

One method to counteract the poor information in the
planning model is to perform continuous planning. We have
shown that continuous planning is beneficial when the plan-
ning model does not match the nature model, but there is
still some valid information in the model used for planning.
The RMS error of the model can be used to determine if
continuous planning is worthwhile.
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